Line data Source code
1 : /*-
2 : * Copyright 2005,2007,2009 Colin Percival
3 : * All rights reserved.
4 : *
5 : * Redistribution and use in source and binary forms, with or without
6 : * modification, are permitted provided that the following conditions
7 : * are met:
8 : * 1. Redistributions of source code must retain the above copyright
9 : * notice, this list of conditions and the following disclaimer.
10 : * 2. Redistributions in binary form must reproduce the above copyright
11 : * notice, this list of conditions and the following disclaimer in the
12 : * documentation and/or other materials provided with the distribution.
13 : *
14 : * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 : * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 : * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 : * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 : * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 : * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 : * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 : * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 : * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 : * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 : * SUCH DAMAGE.
25 : */
26 :
27 : #include <zebra.h>
28 : #include "sha256.h"
29 :
30 : #if !HAVE_DECL_BE32DEC
31 107008 : static inline uint32_t be32dec(const void *pp)
32 : {
33 107008 : const uint8_t *p = (uint8_t const *)pp;
34 :
35 107008 : return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8)
36 107008 : + ((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24));
37 : }
38 : #endif
39 :
40 : #if !HAVE_DECL_BE32ENC
41 39210 : static inline void be32enc(void *pp, uint32_t x)
42 : {
43 39210 : uint8_t *p = (uint8_t *)pp;
44 :
45 39210 : p[3] = x & 0xff;
46 39210 : p[2] = (x >> 8) & 0xff;
47 39210 : p[1] = (x >> 16) & 0xff;
48 39210 : p[0] = (x >> 24) & 0xff;
49 : }
50 : #endif
51 :
52 : /*
53 : * Encode a length len/4 vector of (uint32_t) into a length len vector of
54 : * (unsigned char) in big-endian form. Assumes len is a multiple of 4.
55 : */
56 7842 : static void be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len)
57 : {
58 7842 : size_t i;
59 :
60 47052 : for (i = 0; i < len / 4; i++)
61 39210 : be32enc(dst + i * 4, src[i]);
62 7842 : }
63 :
64 : /*
65 : * Decode a big-endian length len vector of (unsigned char) into a length
66 : * len/4 vector of (uint32_t). Assumes len is a multiple of 4.
67 : */
68 6688 : static void be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len)
69 : {
70 6688 : size_t i;
71 :
72 113696 : for (i = 0; i < len / 4; i++)
73 107008 : dst[i] = be32dec(src + i * 4);
74 6688 : }
75 :
76 : /* Elementary functions used by SHA256 */
77 : #define Ch(x, y, z) ((x & (y ^ z)) ^ z)
78 : #define Maj(x, y, z) ((x & (y | z)) | (y & z))
79 : #define SHR(x, n) (x >> n)
80 : #define ROTR(x, n) ((x >> n) | (x << (32 - n)))
81 : #define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
82 : #define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
83 : #define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
84 : #define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
85 :
86 : /* SHA256 round function */
87 : #define RND(a, b, c, d, e, f, g, h, k) \
88 : t0 = h + S1(e) + Ch(e, f, g) + k; \
89 : t1 = S0(a) + Maj(a, b, c); \
90 : d += t0; \
91 : h = t0 + t1;
92 :
93 : /* Adjusted round function for rotating state */
94 : #define RNDr(S, W, i, k) \
95 : RND(S[(64 - i) % 8], S[(65 - i) % 8], S[(66 - i) % 8], \
96 : S[(67 - i) % 8], S[(68 - i) % 8], S[(69 - i) % 8], \
97 : S[(70 - i) % 8], S[(71 - i) % 8], W[i] + k)
98 :
99 : /*
100 : * SHA256 block compression function. The 256-bit state is transformed via
101 : * the 512-bit input block to produce a new state.
102 : */
103 6688 : static void SHA256_Transform(uint32_t *state, const unsigned char block[64])
104 : {
105 6688 : uint32_t W[64];
106 6688 : uint32_t S[8];
107 6688 : uint32_t t0, t1;
108 6688 : int i;
109 :
110 : /* 1. Prepare message schedule W. */
111 6688 : be32dec_vect(W, block, 64);
112 334400 : for (i = 16; i < 64; i++)
113 321024 : W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
114 :
115 : /* 2. Initialize working variables. */
116 6688 : memcpy(S, state, 32);
117 :
118 : /* 3. Mix. */
119 6688 : RNDr(S, W, 0, 0x428a2f98);
120 6688 : RNDr(S, W, 1, 0x71374491);
121 6688 : RNDr(S, W, 2, 0xb5c0fbcf);
122 6688 : RNDr(S, W, 3, 0xe9b5dba5);
123 6688 : RNDr(S, W, 4, 0x3956c25b);
124 6688 : RNDr(S, W, 5, 0x59f111f1);
125 6688 : RNDr(S, W, 6, 0x923f82a4);
126 6688 : RNDr(S, W, 7, 0xab1c5ed5);
127 6688 : RNDr(S, W, 8, 0xd807aa98);
128 6688 : RNDr(S, W, 9, 0x12835b01);
129 6688 : RNDr(S, W, 10, 0x243185be);
130 6688 : RNDr(S, W, 11, 0x550c7dc3);
131 6688 : RNDr(S, W, 12, 0x72be5d74);
132 6688 : RNDr(S, W, 13, 0x80deb1fe);
133 6688 : RNDr(S, W, 14, 0x9bdc06a7);
134 6688 : RNDr(S, W, 15, 0xc19bf174);
135 6688 : RNDr(S, W, 16, 0xe49b69c1);
136 6688 : RNDr(S, W, 17, 0xefbe4786);
137 6688 : RNDr(S, W, 18, 0x0fc19dc6);
138 6688 : RNDr(S, W, 19, 0x240ca1cc);
139 6688 : RNDr(S, W, 20, 0x2de92c6f);
140 6688 : RNDr(S, W, 21, 0x4a7484aa);
141 6688 : RNDr(S, W, 22, 0x5cb0a9dc);
142 6688 : RNDr(S, W, 23, 0x76f988da);
143 6688 : RNDr(S, W, 24, 0x983e5152);
144 6688 : RNDr(S, W, 25, 0xa831c66d);
145 6688 : RNDr(S, W, 26, 0xb00327c8);
146 6688 : RNDr(S, W, 27, 0xbf597fc7);
147 6688 : RNDr(S, W, 28, 0xc6e00bf3);
148 6688 : RNDr(S, W, 29, 0xd5a79147);
149 6688 : RNDr(S, W, 30, 0x06ca6351);
150 6688 : RNDr(S, W, 31, 0x14292967);
151 6688 : RNDr(S, W, 32, 0x27b70a85);
152 6688 : RNDr(S, W, 33, 0x2e1b2138);
153 6688 : RNDr(S, W, 34, 0x4d2c6dfc);
154 6688 : RNDr(S, W, 35, 0x53380d13);
155 6688 : RNDr(S, W, 36, 0x650a7354);
156 6688 : RNDr(S, W, 37, 0x766a0abb);
157 6688 : RNDr(S, W, 38, 0x81c2c92e);
158 6688 : RNDr(S, W, 39, 0x92722c85);
159 6688 : RNDr(S, W, 40, 0xa2bfe8a1);
160 6688 : RNDr(S, W, 41, 0xa81a664b);
161 6688 : RNDr(S, W, 42, 0xc24b8b70);
162 6688 : RNDr(S, W, 43, 0xc76c51a3);
163 6688 : RNDr(S, W, 44, 0xd192e819);
164 6688 : RNDr(S, W, 45, 0xd6990624);
165 6688 : RNDr(S, W, 46, 0xf40e3585);
166 6688 : RNDr(S, W, 47, 0x106aa070);
167 6688 : RNDr(S, W, 48, 0x19a4c116);
168 6688 : RNDr(S, W, 49, 0x1e376c08);
169 6688 : RNDr(S, W, 50, 0x2748774c);
170 6688 : RNDr(S, W, 51, 0x34b0bcb5);
171 6688 : RNDr(S, W, 52, 0x391c0cb3);
172 6688 : RNDr(S, W, 53, 0x4ed8aa4a);
173 6688 : RNDr(S, W, 54, 0x5b9cca4f);
174 6688 : RNDr(S, W, 55, 0x682e6ff3);
175 6688 : RNDr(S, W, 56, 0x748f82ee);
176 6688 : RNDr(S, W, 57, 0x78a5636f);
177 6688 : RNDr(S, W, 58, 0x84c87814);
178 6688 : RNDr(S, W, 59, 0x8cc70208);
179 6688 : RNDr(S, W, 60, 0x90befffa);
180 6688 : RNDr(S, W, 61, 0xa4506ceb);
181 6688 : RNDr(S, W, 62, 0xbef9a3f7);
182 6688 : RNDr(S, W, 63, 0xc67178f2);
183 :
184 : /* 4. Mix local working variables into global state */
185 60192 : for (i = 0; i < 8; i++)
186 53504 : state[i] += S[i];
187 :
188 : /* Clean the stack. */
189 6688 : explicit_bzero(W, 256);
190 6688 : explicit_bzero(S, 32);
191 6688 : explicit_bzero(&t0, sizeof(t0));
192 6688 : explicit_bzero(&t1, sizeof(t0));
193 6688 : }
194 :
195 : static unsigned char PAD[64] = {
196 : 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
197 : 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
198 : 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
199 :
200 : /* Add padding and terminating bit-count. */
201 3921 : static void SHA256_Pad(SHA256_CTX *ctx)
202 : {
203 3921 : unsigned char len[8];
204 3921 : uint32_t r, plen;
205 :
206 : /*
207 : * Convert length to a vector of bytes -- we do this now rather
208 : * than later because the length will change after we pad.
209 : */
210 3921 : be32enc_vect(len, ctx->count, 8);
211 :
212 : /* Add 1--64 bytes so that the resulting length is 56 mod 64 */
213 3921 : r = (ctx->count[1] >> 3) & 0x3f;
214 3921 : plen = (r < 56) ? (56 - r) : (120 - r);
215 3921 : SHA256_Update(ctx, PAD, (size_t)plen);
216 :
217 : /* Add the terminating bit-count */
218 3921 : SHA256_Update(ctx, len, 8);
219 3921 : }
220 :
221 : /* SHA-256 initialization. Begins a SHA-256 operation. */
222 3921 : void SHA256_Init(SHA256_CTX *ctx)
223 : {
224 :
225 : /* Zero bits processed so far */
226 3921 : ctx->count[0] = ctx->count[1] = 0;
227 :
228 : /* Magic initialization constants */
229 3921 : ctx->state[0] = 0x6A09E667;
230 3921 : ctx->state[1] = 0xBB67AE85;
231 3921 : ctx->state[2] = 0x3C6EF372;
232 3921 : ctx->state[3] = 0xA54FF53A;
233 3921 : ctx->state[4] = 0x510E527F;
234 3921 : ctx->state[5] = 0x9B05688C;
235 3921 : ctx->state[6] = 0x1F83D9AB;
236 3921 : ctx->state[7] = 0x5BE0CD19;
237 3921 : }
238 :
239 : /* Add bytes into the hash */
240 23526 : void SHA256_Update(SHA256_CTX *ctx, const void *in, size_t len)
241 : {
242 23526 : uint32_t bitlen[2];
243 23526 : uint32_t r;
244 23526 : const unsigned char *src = in;
245 :
246 : /* Number of bytes left in the buffer from previous updates */
247 23526 : r = (ctx->count[1] >> 3) & 0x3f;
248 :
249 : /* Convert the length into a number of bits */
250 23526 : bitlen[1] = ((uint32_t)len) << 3;
251 23526 : bitlen[0] = (uint32_t)(len >> 29);
252 :
253 : /* Update number of bits */
254 23526 : if ((ctx->count[1] += bitlen[1]) < bitlen[1])
255 0 : ctx->count[0]++;
256 23526 : ctx->count[0] += bitlen[0];
257 :
258 : /* Handle the case where we don't need to perform any transforms */
259 23526 : if (len < 64 - r) {
260 16845 : memcpy(&ctx->buf[r], src, len);
261 16845 : return;
262 : }
263 :
264 : /* Finish the current block */
265 6681 : memcpy(&ctx->buf[r], src, 64 - r);
266 6681 : SHA256_Transform(ctx->state, ctx->buf);
267 6681 : src += 64 - r;
268 6681 : len -= 64 - r;
269 :
270 : /* Perform complete blocks */
271 6688 : while (len >= 64) {
272 7 : SHA256_Transform(ctx->state, src);
273 7 : src += 64;
274 7 : len -= 64;
275 : }
276 :
277 : /* Copy left over data into buffer */
278 6681 : memcpy(ctx->buf, src, len);
279 : }
280 :
281 : /*
282 : * SHA-256 finalization. Pads the input data, exports the hash value,
283 : * and clears the context state.
284 : */
285 3921 : void SHA256_Final(unsigned char digest[32], SHA256_CTX *ctx)
286 : {
287 :
288 : /* Add padding */
289 3921 : SHA256_Pad(ctx);
290 :
291 : /* Write the hash */
292 3921 : be32enc_vect(digest, ctx->state, 32);
293 :
294 : /* Clear the context state */
295 3921 : explicit_bzero((void *)ctx, sizeof(*ctx));
296 3921 : }
297 :
298 : /* Initialize an HMAC-SHA256 operation with the given key. */
299 0 : void HMAC__SHA256_Init(HMAC_SHA256_CTX *ctx, const void *_K, size_t Klen)
300 : {
301 0 : unsigned char pad[64];
302 0 : unsigned char khash[32];
303 0 : const unsigned char *K = _K;
304 0 : size_t i;
305 :
306 : /* If Klen > 64, the key is really SHA256(K). */
307 0 : if (Klen > 64) {
308 0 : SHA256_Init(&ctx->ictx);
309 0 : SHA256_Update(&ctx->ictx, K, Klen);
310 0 : SHA256_Final(khash, &ctx->ictx);
311 0 : K = khash;
312 0 : Klen = 32;
313 : }
314 :
315 : /* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
316 0 : SHA256_Init(&ctx->ictx);
317 0 : memset(pad, 0x36, 64);
318 0 : for (i = 0; i < Klen; i++)
319 0 : pad[i] ^= K[i];
320 0 : SHA256_Update(&ctx->ictx, pad, 64);
321 :
322 : /* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
323 0 : SHA256_Init(&ctx->octx);
324 0 : memset(pad, 0x5c, 64);
325 0 : for (i = 0; i < Klen; i++)
326 0 : pad[i] ^= K[i];
327 0 : SHA256_Update(&ctx->octx, pad, 64);
328 :
329 : /* Clean the stack. */
330 0 : explicit_bzero(khash, 32);
331 0 : }
332 :
333 : /* Add bytes to the HMAC-SHA256 operation. */
334 0 : void HMAC__SHA256_Update(HMAC_SHA256_CTX *ctx, const void *in, size_t len)
335 : {
336 :
337 : /* Feed data to the inner SHA256 operation. */
338 0 : SHA256_Update(&ctx->ictx, in, len);
339 0 : }
340 :
341 : /* Finish an HMAC-SHA256 operation. */
342 0 : void HMAC__SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX *ctx)
343 : {
344 0 : unsigned char ihash[32];
345 :
346 : /* Finish the inner SHA256 operation. */
347 0 : SHA256_Final(ihash, &ctx->ictx);
348 :
349 : /* Feed the inner hash to the outer SHA256 operation. */
350 0 : SHA256_Update(&ctx->octx, ihash, 32);
351 :
352 : /* Finish the outer SHA256 operation. */
353 0 : SHA256_Final(digest, &ctx->octx);
354 :
355 : /* Clean the stack. */
356 0 : explicit_bzero(ihash, 32);
357 0 : }
358 :
359 : /**
360 : * PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
361 : * Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
362 : * write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
363 : */
364 0 : void PBKDF2_SHA256(const uint8_t *passwd, size_t passwdlen, const uint8_t *salt,
365 : size_t saltlen, uint64_t c, uint8_t *buf, size_t dkLen)
366 : {
367 0 : HMAC_SHA256_CTX PShctx, hctx;
368 0 : size_t i;
369 0 : uint8_t ivec[4];
370 0 : uint8_t U[32];
371 0 : uint8_t T[32];
372 0 : uint64_t j;
373 0 : int k;
374 0 : size_t clen;
375 :
376 : /* Compute HMAC state after processing P and S. */
377 0 : HMAC__SHA256_Init(&PShctx, passwd, passwdlen);
378 0 : HMAC__SHA256_Update(&PShctx, salt, saltlen);
379 :
380 : /* Iterate through the blocks. */
381 0 : for (i = 0; i * 32 < dkLen; i++) {
382 : /* Generate INT(i + 1). */
383 0 : be32enc(ivec, (uint32_t)(i + 1));
384 :
385 : /* Compute U_1 = PRF(P, S || INT(i)). */
386 0 : memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX));
387 0 : HMAC__SHA256_Update(&hctx, ivec, 4);
388 0 : HMAC__SHA256_Final(U, &hctx);
389 :
390 : /* T_i = U_1 ... */
391 0 : memcpy(T, U, 32);
392 :
393 0 : for (j = 2; j <= c; j++) {
394 : /* Compute U_j. */
395 0 : HMAC__SHA256_Init(&hctx, passwd, passwdlen);
396 0 : HMAC__SHA256_Update(&hctx, U, 32);
397 0 : HMAC__SHA256_Final(U, &hctx);
398 :
399 : /* ... xor U_j ... */
400 0 : for (k = 0; k < 32; k++)
401 0 : T[k] ^= U[k];
402 : }
403 :
404 : /* Copy as many bytes as necessary into buf. */
405 0 : clen = dkLen - i * 32;
406 0 : if (clen > 32)
407 : clen = 32;
408 0 : memcpy(&buf[i * 32], T, clen);
409 : }
410 :
411 : /* Clean PShctx, since we never called _Final on it. */
412 0 : explicit_bzero(&PShctx, sizeof(HMAC_SHA256_CTX));
413 0 : }
|