back to topotato report
topotato coverage report
Current view: top level - lib - sha256.c (source / functions) Hit Total Coverage
Test: test_bgp_ecmp_enhe.py::BGP_Unnumbered_ECMP Lines: 146 208 70.2 %
Date: 2023-11-16 17:19:14 Functions: 7 22 31.8 %

          Line data    Source code
       1             : // SPDX-License-Identifier: BSD-2-Clause
       2             : /*-
       3             :  * Copyright 2005,2007,2009 Colin Percival
       4             :  * All rights reserved.
       5             :  */
       6             : 
       7             : #include <zebra.h>
       8             : #include "sha256.h"
       9             : 
      10             : #if !HAVE_DECL_BE32DEC
      11      258080 : static inline uint32_t be32dec(const void *pp)
      12             : {
      13      258080 :         const uint8_t *p = (uint8_t const *)pp;
      14             : 
      15      258080 :         return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8)
      16      258080 :                 + ((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24));
      17             : }
      18             : #endif
      19             : 
      20             : #if !HAVE_DECL_BE32ENC
      21       93000 : static inline void be32enc(void *pp, uint32_t x)
      22             : {
      23       93000 :         uint8_t *p = (uint8_t *)pp;
      24             : 
      25       93000 :         p[3] = x & 0xff;
      26       93000 :         p[2] = (x >> 8) & 0xff;
      27       93000 :         p[1] = (x >> 16) & 0xff;
      28       93000 :         p[0] = (x >> 24) & 0xff;
      29             : }
      30             : #endif
      31             : 
      32             : /*
      33             :  * Encode a length len/4 vector of (uint32_t) into a length len vector of
      34             :  * (unsigned char) in big-endian form.  Assumes len is a multiple of 4.
      35             :  */
      36       18600 : static void be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len)
      37             : {
      38       18600 :         size_t i;
      39             : 
      40      111600 :         for (i = 0; i < len / 4; i++)
      41       93000 :                 be32enc(dst + i * 4, src[i]);
      42       18600 : }
      43             : 
      44             : /*
      45             :  * Decode a big-endian length len vector of (unsigned char) into a length
      46             :  * len/4 vector of (uint32_t).  Assumes len is a multiple of 4.
      47             :  */
      48       16130 : static void be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len)
      49             : {
      50       16130 :         size_t i;
      51             : 
      52      274210 :         for (i = 0; i < len / 4; i++)
      53      258080 :                 dst[i] = be32dec(src + i * 4);
      54       16130 : }
      55             : 
      56             : /* Elementary functions used by SHA256 */
      57             : #define Ch(x, y, z)     ((x & (y ^ z)) ^ z)
      58             : #define Maj(x, y, z)    ((x & (y | z)) | (y & z))
      59             : #define SHR(x, n)       (x >> n)
      60             : #define ROTR(x, n)      ((x >> n) | (x << (32 - n)))
      61             : #define S0(x)           (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
      62             : #define S1(x)           (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
      63             : #define s0(x)           (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
      64             : #define s1(x)           (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
      65             : 
      66             : /* SHA256 round function */
      67             : #define RND(a, b, c, d, e, f, g, h, k)                                         \
      68             :         t0 = h + S1(e) + Ch(e, f, g) + k;                                      \
      69             :         t1 = S0(a) + Maj(a, b, c);                                             \
      70             :         d += t0;                                                               \
      71             :         h = t0 + t1;
      72             : 
      73             : /* Adjusted round function for rotating state */
      74             : #define RNDr(S, W, i, k)                                                       \
      75             :         RND(S[(64 - i) % 8], S[(65 - i) % 8], S[(66 - i) % 8],                 \
      76             :             S[(67 - i) % 8], S[(68 - i) % 8], S[(69 - i) % 8],                 \
      77             :             S[(70 - i) % 8], S[(71 - i) % 8], W[i] + k)
      78             : 
      79             : /*
      80             :  * SHA256 block compression function.  The 256-bit state is transformed via
      81             :  * the 512-bit input block to produce a new state.
      82             :  */
      83       16130 : static void SHA256_Transform(uint32_t *state, const unsigned char block[64])
      84             : {
      85       16130 :         uint32_t W[64];
      86       16130 :         uint32_t S[8];
      87       16130 :         uint32_t t0, t1;
      88       16130 :         int i;
      89             : 
      90             :         /* 1. Prepare message schedule W. */
      91       16130 :         be32dec_vect(W, block, 64);
      92      806500 :         for (i = 16; i < 64; i++)
      93      774240 :                 W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
      94             : 
      95             :         /* 2. Initialize working variables. */
      96       16130 :         memcpy(S, state, 32);
      97             : 
      98             :         /* 3. Mix. */
      99       16130 :         RNDr(S, W, 0, 0x428a2f98);
     100       16130 :         RNDr(S, W, 1, 0x71374491);
     101       16130 :         RNDr(S, W, 2, 0xb5c0fbcf);
     102       16130 :         RNDr(S, W, 3, 0xe9b5dba5);
     103       16130 :         RNDr(S, W, 4, 0x3956c25b);
     104       16130 :         RNDr(S, W, 5, 0x59f111f1);
     105       16130 :         RNDr(S, W, 6, 0x923f82a4);
     106       16130 :         RNDr(S, W, 7, 0xab1c5ed5);
     107       16130 :         RNDr(S, W, 8, 0xd807aa98);
     108       16130 :         RNDr(S, W, 9, 0x12835b01);
     109       16130 :         RNDr(S, W, 10, 0x243185be);
     110       16130 :         RNDr(S, W, 11, 0x550c7dc3);
     111       16130 :         RNDr(S, W, 12, 0x72be5d74);
     112       16130 :         RNDr(S, W, 13, 0x80deb1fe);
     113       16130 :         RNDr(S, W, 14, 0x9bdc06a7);
     114       16130 :         RNDr(S, W, 15, 0xc19bf174);
     115       16130 :         RNDr(S, W, 16, 0xe49b69c1);
     116       16130 :         RNDr(S, W, 17, 0xefbe4786);
     117       16130 :         RNDr(S, W, 18, 0x0fc19dc6);
     118       16130 :         RNDr(S, W, 19, 0x240ca1cc);
     119       16130 :         RNDr(S, W, 20, 0x2de92c6f);
     120       16130 :         RNDr(S, W, 21, 0x4a7484aa);
     121       16130 :         RNDr(S, W, 22, 0x5cb0a9dc);
     122       16130 :         RNDr(S, W, 23, 0x76f988da);
     123       16130 :         RNDr(S, W, 24, 0x983e5152);
     124       16130 :         RNDr(S, W, 25, 0xa831c66d);
     125       16130 :         RNDr(S, W, 26, 0xb00327c8);
     126       16130 :         RNDr(S, W, 27, 0xbf597fc7);
     127       16130 :         RNDr(S, W, 28, 0xc6e00bf3);
     128       16130 :         RNDr(S, W, 29, 0xd5a79147);
     129       16130 :         RNDr(S, W, 30, 0x06ca6351);
     130       16130 :         RNDr(S, W, 31, 0x14292967);
     131       16130 :         RNDr(S, W, 32, 0x27b70a85);
     132       16130 :         RNDr(S, W, 33, 0x2e1b2138);
     133       16130 :         RNDr(S, W, 34, 0x4d2c6dfc);
     134       16130 :         RNDr(S, W, 35, 0x53380d13);
     135       16130 :         RNDr(S, W, 36, 0x650a7354);
     136       16130 :         RNDr(S, W, 37, 0x766a0abb);
     137       16130 :         RNDr(S, W, 38, 0x81c2c92e);
     138       16130 :         RNDr(S, W, 39, 0x92722c85);
     139       16130 :         RNDr(S, W, 40, 0xa2bfe8a1);
     140       16130 :         RNDr(S, W, 41, 0xa81a664b);
     141       16130 :         RNDr(S, W, 42, 0xc24b8b70);
     142       16130 :         RNDr(S, W, 43, 0xc76c51a3);
     143       16130 :         RNDr(S, W, 44, 0xd192e819);
     144       16130 :         RNDr(S, W, 45, 0xd6990624);
     145       16130 :         RNDr(S, W, 46, 0xf40e3585);
     146       16130 :         RNDr(S, W, 47, 0x106aa070);
     147       16130 :         RNDr(S, W, 48, 0x19a4c116);
     148       16130 :         RNDr(S, W, 49, 0x1e376c08);
     149       16130 :         RNDr(S, W, 50, 0x2748774c);
     150       16130 :         RNDr(S, W, 51, 0x34b0bcb5);
     151       16130 :         RNDr(S, W, 52, 0x391c0cb3);
     152       16130 :         RNDr(S, W, 53, 0x4ed8aa4a);
     153       16130 :         RNDr(S, W, 54, 0x5b9cca4f);
     154       16130 :         RNDr(S, W, 55, 0x682e6ff3);
     155       16130 :         RNDr(S, W, 56, 0x748f82ee);
     156       16130 :         RNDr(S, W, 57, 0x78a5636f);
     157       16130 :         RNDr(S, W, 58, 0x84c87814);
     158       16130 :         RNDr(S, W, 59, 0x8cc70208);
     159       16130 :         RNDr(S, W, 60, 0x90befffa);
     160       16130 :         RNDr(S, W, 61, 0xa4506ceb);
     161       16130 :         RNDr(S, W, 62, 0xbef9a3f7);
     162       16130 :         RNDr(S, W, 63, 0xc67178f2);
     163             : 
     164             :         /* 4. Mix local working variables into global state */
     165      145170 :         for (i = 0; i < 8; i++)
     166      129040 :                 state[i] += S[i];
     167             : 
     168             :         /* Clean the stack. */
     169       16130 :         explicit_bzero(W, 256);
     170       16130 :         explicit_bzero(S, 32);
     171       16130 :         explicit_bzero(&t0, sizeof(t0));
     172       16130 :         explicit_bzero(&t1, sizeof(t0));
     173       16130 : }
     174             : 
     175             : static unsigned char PAD[64] = {
     176             :         0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     177             :         0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     178             :         0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
     179             : 
     180             : /* Add padding and terminating bit-count. */
     181        9300 : static void SHA256_Pad(SHA256_CTX *ctx)
     182             : {
     183        9300 :         unsigned char len[8];
     184        9300 :         uint32_t r, plen;
     185             : 
     186             :         /*
     187             :          * Convert length to a vector of bytes -- we do this now rather
     188             :          * than later because the length will change after we pad.
     189             :          */
     190        9300 :         be32enc_vect(len, ctx->count, 8);
     191             : 
     192             :         /* Add 1--64 bytes so that the resulting length is 56 mod 64 */
     193        9300 :         r = (ctx->count[1] >> 3) & 0x3f;
     194        9300 :         plen = (r < 56) ? (56 - r) : (120 - r);
     195        9300 :         SHA256_Update(ctx, PAD, (size_t)plen);
     196             : 
     197             :         /* Add the terminating bit-count */
     198        9300 :         SHA256_Update(ctx, len, 8);
     199        9300 : }
     200             : 
     201             : /* SHA-256 initialization.  Begins a SHA-256 operation. */
     202        9300 : void SHA256_Init(SHA256_CTX *ctx)
     203             : {
     204             : 
     205             :         /* Zero bits processed so far */
     206        9300 :         ctx->count[0] = ctx->count[1] = 0;
     207             : 
     208             :         /* Magic initialization constants */
     209        9300 :         ctx->state[0] = 0x6A09E667;
     210        9300 :         ctx->state[1] = 0xBB67AE85;
     211        9300 :         ctx->state[2] = 0x3C6EF372;
     212        9300 :         ctx->state[3] = 0xA54FF53A;
     213        9300 :         ctx->state[4] = 0x510E527F;
     214        9300 :         ctx->state[5] = 0x9B05688C;
     215        9300 :         ctx->state[6] = 0x1F83D9AB;
     216        9300 :         ctx->state[7] = 0x5BE0CD19;
     217        9300 : }
     218             : 
     219             : /* Add bytes into the hash */
     220       55800 : void SHA256_Update(SHA256_CTX *ctx, const void *in, size_t len)
     221             : {
     222       55800 :         uint32_t bitlen[2];
     223       55800 :         uint32_t r;
     224       55800 :         const unsigned char *src = in;
     225             : 
     226             :         /* Number of bytes left in the buffer from previous updates */
     227       55800 :         r = (ctx->count[1] >> 3) & 0x3f;
     228             : 
     229             :         /* Convert the length into a number of bits */
     230       55800 :         bitlen[1] = ((uint32_t)len) << 3;
     231       55800 :         bitlen[0] = (uint32_t)(len >> 29);
     232             : 
     233             :         /* Update number of bits */
     234       55800 :         if ((ctx->count[1] += bitlen[1]) < bitlen[1])
     235           0 :                 ctx->count[0]++;
     236       55800 :         ctx->count[0] += bitlen[0];
     237             : 
     238             :         /* Handle the case where we don't need to perform any transforms */
     239       55800 :         if (len < 64 - r) {
     240       39722 :                 memcpy(&ctx->buf[r], src, len);
     241       39722 :                 return;
     242             :         }
     243             : 
     244             :         /* Finish the current block */
     245       16078 :         memcpy(&ctx->buf[r], src, 64 - r);
     246       16078 :         SHA256_Transform(ctx->state, ctx->buf);
     247       16078 :         src += 64 - r;
     248       16078 :         len -= 64 - r;
     249             : 
     250             :         /* Perform complete blocks */
     251       16130 :         while (len >= 64) {
     252          52 :                 SHA256_Transform(ctx->state, src);
     253          52 :                 src += 64;
     254          52 :                 len -= 64;
     255             :         }
     256             : 
     257             :         /* Copy left over data into buffer */
     258       16078 :         memcpy(ctx->buf, src, len);
     259             : }
     260             : 
     261             : /*
     262             :  * SHA-256 finalization.  Pads the input data, exports the hash value,
     263             :  * and clears the context state.
     264             :  */
     265        9300 : void SHA256_Final(unsigned char digest[32], SHA256_CTX *ctx)
     266             : {
     267             : 
     268             :         /* Add padding */
     269        9300 :         SHA256_Pad(ctx);
     270             : 
     271             :         /* Write the hash */
     272        9300 :         be32enc_vect(digest, ctx->state, 32);
     273             : 
     274             :         /* Clear the context state */
     275        9300 :         explicit_bzero((void *)ctx, sizeof(*ctx));
     276        9300 : }
     277             : 
     278             : /* Initialize an HMAC-SHA256 operation with the given key. */
     279           0 : void HMAC__SHA256_Init(HMAC_SHA256_CTX *ctx, const void *_K, size_t Klen)
     280             : {
     281           0 :         unsigned char pad[64];
     282           0 :         unsigned char khash[32];
     283           0 :         const unsigned char *K = _K;
     284           0 :         size_t i;
     285             : 
     286             :         /* If Klen > 64, the key is really SHA256(K). */
     287           0 :         if (Klen > 64) {
     288           0 :                 SHA256_Init(&ctx->ictx);
     289           0 :                 SHA256_Update(&ctx->ictx, K, Klen);
     290           0 :                 SHA256_Final(khash, &ctx->ictx);
     291           0 :                 K = khash;
     292           0 :                 Klen = 32;
     293             :         }
     294             : 
     295             :         /* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
     296           0 :         SHA256_Init(&ctx->ictx);
     297           0 :         memset(pad, 0x36, 64);
     298           0 :         for (i = 0; i < Klen; i++)
     299           0 :                 pad[i] ^= K[i];
     300           0 :         SHA256_Update(&ctx->ictx, pad, 64);
     301             : 
     302             :         /* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
     303           0 :         SHA256_Init(&ctx->octx);
     304           0 :         memset(pad, 0x5c, 64);
     305           0 :         for (i = 0; i < Klen; i++)
     306           0 :                 pad[i] ^= K[i];
     307           0 :         SHA256_Update(&ctx->octx, pad, 64);
     308             : 
     309             :         /* Clean the stack. */
     310           0 :         explicit_bzero(khash, 32);
     311           0 : }
     312             : 
     313             : /* Add bytes to the HMAC-SHA256 operation. */
     314           0 : void HMAC__SHA256_Update(HMAC_SHA256_CTX *ctx, const void *in, size_t len)
     315             : {
     316             : 
     317             :         /* Feed data to the inner SHA256 operation. */
     318           0 :         SHA256_Update(&ctx->ictx, in, len);
     319           0 : }
     320             : 
     321             : /* Finish an HMAC-SHA256 operation. */
     322           0 : void HMAC__SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX *ctx)
     323             : {
     324           0 :         unsigned char ihash[32];
     325             : 
     326             :         /* Finish the inner SHA256 operation. */
     327           0 :         SHA256_Final(ihash, &ctx->ictx);
     328             : 
     329             :         /* Feed the inner hash to the outer SHA256 operation. */
     330           0 :         SHA256_Update(&ctx->octx, ihash, 32);
     331             : 
     332             :         /* Finish the outer SHA256 operation. */
     333           0 :         SHA256_Final(digest, &ctx->octx);
     334             : 
     335             :         /* Clean the stack. */
     336           0 :         explicit_bzero(ihash, 32);
     337           0 : }
     338             : 
     339             : /**
     340             :  * PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
     341             :  * Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
     342             :  * write the output to buf.  The value dkLen must be at most 32 * (2^32 - 1).
     343             :  */
     344           0 : void PBKDF2_SHA256(const uint8_t *passwd, size_t passwdlen, const uint8_t *salt,
     345             :                    size_t saltlen, uint64_t c, uint8_t *buf, size_t dkLen)
     346             : {
     347           0 :         HMAC_SHA256_CTX PShctx = {}, hctx;
     348           0 :         size_t i;
     349           0 :         uint8_t ivec[4];
     350           0 :         uint8_t U[32];
     351           0 :         uint8_t T[32];
     352           0 :         uint64_t j;
     353           0 :         int k;
     354           0 :         size_t clen;
     355             : 
     356             :         /* Compute HMAC state after processing P and S. */
     357           0 :         HMAC__SHA256_Init(&PShctx, passwd, passwdlen);
     358           0 :         HMAC__SHA256_Update(&PShctx, salt, saltlen);
     359             : 
     360             :         /* Iterate through the blocks. */
     361           0 :         for (i = 0; i * 32 < dkLen; i++) {
     362             :                 /* Generate INT(i + 1). */
     363           0 :                 be32enc(ivec, (uint32_t)(i + 1));
     364             : 
     365             :                 /* Compute U_1 = PRF(P, S || INT(i)). */
     366           0 :                 memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX));
     367           0 :                 HMAC__SHA256_Update(&hctx, ivec, 4);
     368           0 :                 HMAC__SHA256_Final(U, &hctx);
     369             : 
     370             :                 /* T_i = U_1 ... */
     371           0 :                 memcpy(T, U, 32);
     372             : 
     373           0 :                 for (j = 2; j <= c; j++) {
     374             :                         /* Compute U_j. */
     375           0 :                         HMAC__SHA256_Init(&hctx, passwd, passwdlen);
     376           0 :                         HMAC__SHA256_Update(&hctx, U, 32);
     377           0 :                         HMAC__SHA256_Final(U, &hctx);
     378             : 
     379             :                         /* ... xor U_j ... */
     380           0 :                         for (k = 0; k < 32; k++)
     381           0 :                                 T[k] ^= U[k];
     382             :                 }
     383             : 
     384             :                 /* Copy as many bytes as necessary into buf. */
     385           0 :                 clen = dkLen - i * 32;
     386           0 :                 if (clen > 32)
     387             :                         clen = 32;
     388           0 :                 memcpy(&buf[i * 32], T, clen);
     389             :         }
     390             : 
     391             :         /* Clean PShctx, since we never called _Final on it. */
     392           0 :         explicit_bzero(&PShctx, sizeof(HMAC_SHA256_CTX));
     393           0 : }

Generated by: LCOV version v1.16-topotato