back to topotato report
topotato coverage report
Current view: top level - lib - cspf.c (source / functions) Hit Total Coverage
Test: test_bgp_ecmp_enhe.py::BGP_Unnumbered_ECMP Lines: 1 257 0.4 %
Date: 2023-11-16 17:19:14 Functions: 2 35 5.7 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-or-later
       2             : /*
       3             :  * Constraints Shortest Path First algorithms - cspf.c
       4             :  *
       5             :  * Author: Olivier Dugeon <olivier.dugeon@orange.com>
       6             :  *
       7             :  * Copyright (C) 2022 Orange http://www.orange.com
       8             :  *
       9             :  * This file is part of Free Range Routing (FRR).
      10             :  */
      11             : 
      12             : #include <zebra.h>
      13             : 
      14             : #include "if.h"
      15             : #include "linklist.h"
      16             : #include "log.h"
      17             : #include "hash.h"
      18             : #include "memory.h"
      19             : #include "prefix.h"
      20             : #include "table.h"
      21             : #include "stream.h"
      22             : #include "printfrr.h"
      23             : #include "link_state.h"
      24             : #include "cspf.h"
      25             : 
      26             : /* Link State Memory allocation */
      27          12 : DEFINE_MTYPE_STATIC(LIB, PCA, "Path Computation Algorithms");
      28             : 
      29             : /**
      30             :  * Create new Constrained Path. Memory is dynamically allocated.
      31             :  *
      32             :  * @param key   Vertex key of the destination of this path
      33             :  *
      34             :  * @return      Pointer to a new Constrained Path structure
      35             :  */
      36           0 : static struct c_path *cpath_new(uint64_t key)
      37             : {
      38           0 :         struct c_path *path;
      39             : 
      40             :         /* Sanity Check */
      41           0 :         if (key == 0)
      42             :                 return NULL;
      43             : 
      44           0 :         path = XCALLOC(MTYPE_PCA, sizeof(struct c_path));
      45           0 :         path->dst = key;
      46           0 :         path->status = IN_PROGRESS;
      47           0 :         path->edges = list_new();
      48           0 :         path->weight = MAX_COST;
      49             : 
      50           0 :         return path;
      51             : }
      52             : 
      53             : /**
      54             :  * Copy src Constrained Path into dst Constrained Path. A new Constrained Path
      55             :  * structure is dynamically allocated if dst is NULL. If src is NULL, the
      56             :  * function return the dst disregarding if it is NULL or not.
      57             :  *
      58             :  * @param dest  Destination Constrained Path structure
      59             :  * @param src   Source Constrained Path structure
      60             :  *
      61             :  * @return      Pointer to the destination Constrained Path structure
      62             :  */
      63           0 : static struct c_path *cpath_copy(struct c_path *dest, const struct c_path *src)
      64             : {
      65           0 :         struct c_path *new_path;
      66             : 
      67           0 :         if (!src)
      68             :                 return dest;
      69             : 
      70           0 :         if (!dest) {
      71           0 :                 new_path = XCALLOC(MTYPE_PCA, sizeof(struct c_path));
      72             :         } else {
      73           0 :                 new_path = dest;
      74           0 :                 if (dest->edges)
      75           0 :                         list_delete(&new_path->edges);
      76             :         }
      77             : 
      78           0 :         new_path->dst = src->dst;
      79           0 :         new_path->weight = src->weight;
      80           0 :         new_path->edges = list_dup(src->edges);
      81           0 :         new_path->status = src->status;
      82             : 
      83           0 :         return new_path;
      84             : }
      85             : 
      86             : /**
      87             :  * Delete Constrained Path structure. Previous allocated memory is freed.
      88             :  *
      89             :  * @param path  Constrained Path structure to be deleted
      90             :  */
      91           0 : void cpath_del(struct c_path *path)
      92             : {
      93           0 :         if (!path)
      94             :                 return;
      95             : 
      96           0 :         if (path->edges)
      97           0 :                 list_delete(&path->edges);
      98             : 
      99           0 :         XFREE(MTYPE_PCA, path);
     100           0 :         path = NULL;
     101             : }
     102             : 
     103             : /**
     104             :  * Replace the list of edges in the next Constrained Path by the list of edges
     105             :  * in the current Constrained Path.
     106             :  *
     107             :  * @param next_path     next Constrained Path structure
     108             :  * @param cur_path      current Constrained Path structure
     109             :  */
     110           0 : static void cpath_replace(struct c_path *next_path, struct c_path *cur_path)
     111             : {
     112             : 
     113           0 :         if (next_path->edges)
     114           0 :                 list_delete(&next_path->edges);
     115             : 
     116           0 :         next_path->edges = list_dup(cur_path->edges);
     117           0 : }
     118             : 
     119             : /**
     120             :  * Create a new Visited Node structure from the provided Vertex. Structure is
     121             :  * dynamically allocated.
     122             :  *
     123             :  * @param vertex        Vertex structure
     124             :  *
     125             :  * @return              Pointer to the new Visited Node structure
     126             :  */
     127           0 : static struct v_node *vnode_new(struct ls_vertex *vertex)
     128             : {
     129           0 :         struct v_node *vnode;
     130             : 
     131           0 :         if (!vertex)
     132             :                 return NULL;
     133             : 
     134           0 :         vnode = XCALLOC(MTYPE_PCA, sizeof(struct v_node));
     135           0 :         vnode->vertex = vertex;
     136           0 :         vnode->key = vertex->key;
     137             : 
     138           0 :         return vnode;
     139             : }
     140             : 
     141             : /**
     142             :  * Delete Visited Node structure. Previous allocated memory is freed.
     143             :  *
     144             :  * @param vnode         Visited Node structure to be deleted
     145             :  */
     146           0 : static void vnode_del(struct v_node *vnode)
     147             : {
     148           0 :         if (!vnode)
     149             :                 return;
     150             : 
     151           0 :         XFREE(MTYPE_PCA, vnode);
     152           0 :         vnode = NULL;
     153             : }
     154             : 
     155             : /**
     156             :  * Search Vertex in TED by IPv4 address. The function search vertex by browsing
     157             :  * the subnets table. It allows to find not only vertex by router ID, but also
     158             :  * vertex by interface IPv4 address.
     159             :  *
     160             :  * @param ted   Traffic Engineering Database
     161             :  * @param ipv4  IPv4 address
     162             :  *
     163             :  * @return      Vertex if found, NULL otherwise
     164             :  */
     165           0 : static struct ls_vertex *get_vertex_by_ipv4(struct ls_ted *ted,
     166             :                                             struct in_addr ipv4)
     167             : {
     168           0 :         struct ls_subnet *subnet;
     169           0 :         struct prefix p;
     170             : 
     171           0 :         p.family = AF_INET;
     172           0 :         p.u.prefix4 = ipv4;
     173             : 
     174           0 :         frr_each (subnets, &ted->subnets, subnet) {
     175           0 :                 if (subnet->key.family != AF_INET)
     176           0 :                         continue;
     177           0 :                 p.prefixlen = subnet->key.prefixlen;
     178           0 :                 if (prefix_same(&subnet->key, &p))
     179           0 :                         return subnet->vertex;
     180             :         }
     181             : 
     182             :         return NULL;
     183             : }
     184             : 
     185             : /**
     186             :  * Search Vertex in TED by IPv6 address. The function search vertex by browsing
     187             :  * the subnets table. It allows to find not only vertex by router ID, but also
     188             :  * vertex by interface IPv6 address.
     189             :  *
     190             :  * @param ted   Traffic Engineering Database
     191             :  * @param ipv6  IPv6 address
     192             :  *
     193             :  * @return      Vertex if found, NULL otherwise
     194             :  */
     195           0 : static struct ls_vertex *get_vertex_by_ipv6(struct ls_ted *ted,
     196             :                                             struct in6_addr ipv6)
     197             : {
     198           0 :         struct ls_subnet *subnet;
     199           0 :         struct prefix p;
     200             : 
     201           0 :         p.family = AF_INET6;
     202           0 :         p.u.prefix6 = ipv6;
     203             : 
     204           0 :         frr_each (subnets, &ted->subnets, subnet) {
     205           0 :                 if (subnet->key.family != AF_INET6)
     206           0 :                         continue;
     207           0 :                 p.prefixlen = subnet->key.prefixlen;
     208           0 :                 if (prefix_cmp(&subnet->key, &p) == 0)
     209           0 :                         return subnet->vertex;
     210             :         }
     211             : 
     212             :         return NULL;
     213             : }
     214             : 
     215           0 : struct cspf *cspf_new(void)
     216             : {
     217           0 :         struct cspf *algo;
     218             : 
     219             :         /* Allocate New CSPF structure */
     220           0 :         algo = XCALLOC(MTYPE_PCA, sizeof(struct cspf));
     221             : 
     222             :         /* Initialize RB-Trees */
     223           0 :         processed_init(&algo->processed);
     224           0 :         visited_init(&algo->visited);
     225           0 :         pqueue_init(&algo->pqueue);
     226             : 
     227           0 :         algo->path = NULL;
     228           0 :         algo->pdst = NULL;
     229             : 
     230           0 :         return algo;
     231             : }
     232             : 
     233           0 : struct cspf *cspf_init(struct cspf *algo, const struct ls_vertex *src,
     234             :                        const struct ls_vertex *dst, struct constraints *csts)
     235             : {
     236           0 :         struct cspf *new_algo;
     237           0 :         struct c_path *psrc;
     238             : 
     239           0 :         if (!csts)
     240             :                 return NULL;
     241             : 
     242           0 :         if (!algo)
     243           0 :                 new_algo = cspf_new();
     244             :         else
     245             :                 new_algo = algo;
     246             : 
     247             :         /* Initialize Processed Path and Priority Queue with Src & Dst */
     248           0 :         if (src) {
     249           0 :                 psrc = cpath_new(src->key);
     250           0 :                 psrc->weight = 0;
     251           0 :                 processed_add(&new_algo->processed, psrc);
     252           0 :                 pqueue_add(&new_algo->pqueue, psrc);
     253           0 :                 new_algo->path = psrc;
     254             :         }
     255           0 :         if (dst) {
     256           0 :                 new_algo->pdst = cpath_new(dst->key);
     257           0 :                 processed_add(&new_algo->processed, new_algo->pdst);
     258             :         }
     259             : 
     260           0 :         memcpy(&new_algo->csts, csts, sizeof(struct constraints));
     261             : 
     262           0 :         return new_algo;
     263             : }
     264             : 
     265           0 : struct cspf *cspf_init_v4(struct cspf *algo, struct ls_ted *ted,
     266             :                           const struct in_addr src, const struct in_addr dst,
     267             :                           struct constraints *csts)
     268             : {
     269           0 :         struct ls_vertex *vsrc;
     270           0 :         struct ls_vertex *vdst;
     271           0 :         struct cspf *new_algo;
     272             : 
     273             :         /* Sanity Check */
     274           0 :         if (!ted)
     275             :                 return algo;
     276             : 
     277           0 :         if (!algo)
     278           0 :                 new_algo = cspf_new();
     279             :         else
     280             :                 new_algo = algo;
     281             : 
     282             :         /* Got Source and Destination Vertex from TED */
     283           0 :         vsrc = get_vertex_by_ipv4(ted, src);
     284           0 :         vdst = get_vertex_by_ipv4(ted, dst);
     285           0 :         csts->family = AF_INET;
     286             : 
     287           0 :         return cspf_init(new_algo, vsrc, vdst, csts);
     288             : }
     289             : 
     290           0 : struct cspf *cspf_init_v6(struct cspf *algo, struct ls_ted *ted,
     291             :                           const struct in6_addr src, const struct in6_addr dst,
     292             :                           struct constraints *csts)
     293             : {
     294           0 :         struct ls_vertex *vsrc;
     295           0 :         struct ls_vertex *vdst;
     296           0 :         struct cspf *new_algo;
     297             : 
     298             :         /* Sanity Check */
     299           0 :         if (!ted)
     300             :                 return algo;
     301             : 
     302           0 :         if (!algo)
     303           0 :                 new_algo = cspf_new();
     304             :         else
     305             :                 new_algo = algo;
     306             : 
     307             :         /* Got Source and Destination Vertex from TED */
     308           0 :         vsrc = get_vertex_by_ipv6(ted, src);
     309           0 :         vdst = get_vertex_by_ipv6(ted, dst);
     310           0 :         csts->family = AF_INET6;
     311             : 
     312           0 :         return cspf_init(new_algo, vsrc, vdst, csts);
     313             : }
     314             : 
     315           0 : void cspf_clean(struct cspf *algo)
     316             : {
     317           0 :         struct c_path *path;
     318           0 :         struct v_node *vnode;
     319             : 
     320           0 :         if (!algo)
     321             :                 return;
     322             : 
     323             :         /* Normally, Priority Queue is empty. Clean it in case of. */
     324           0 :         if (pqueue_count(&algo->pqueue)) {
     325           0 :                 frr_each_safe (pqueue, &algo->pqueue, path) {
     326           0 :                         pqueue_del(&algo->pqueue, path);
     327             :                 }
     328             :         }
     329             : 
     330             :         /* Empty Processed Path tree and associated Path */
     331           0 :         if (processed_count(&algo->processed)) {
     332           0 :                 frr_each_safe (processed, &algo->processed, path) {
     333           0 :                         processed_del(&algo->processed, path);
     334           0 :                         if (path == algo->pdst)
     335           0 :                                 algo->pdst = NULL;
     336           0 :                         cpath_del(path);
     337             :                 }
     338             :         }
     339             : 
     340             :         /* Empty visited Vertex tree and associated Node */
     341           0 :         if (visited_count(&algo->visited)) {
     342           0 :                 frr_each_safe (visited, &algo->visited, vnode) {
     343           0 :                         visited_del(&algo->visited, vnode);
     344           0 :                         vnode_del(vnode);
     345             :                 }
     346             :         }
     347             : 
     348           0 :         if (algo->pdst)
     349           0 :                 cpath_del(algo->pdst);
     350             : 
     351           0 :         memset(&algo->csts, 0, sizeof(struct constraints));
     352           0 :         algo->path = NULL;
     353           0 :         algo->pdst = NULL;
     354             : }
     355             : 
     356           0 : void cspf_del(struct cspf *algo)
     357             : {
     358           0 :         if (!algo)
     359             :                 return;
     360             : 
     361             :         /* Empty Priority Queue and Processes Path */
     362           0 :         cspf_clean(algo);
     363             : 
     364             :         /* Then, reset Priority Queue, Processed Path and Visited RB-Tree */
     365           0 :         pqueue_fini(&algo->pqueue);
     366           0 :         processed_fini(&algo->processed);
     367           0 :         visited_fini(&algo->visited);
     368             : 
     369           0 :         XFREE(MTYPE_PCA, algo);
     370           0 :         algo = NULL;
     371             : }
     372             : 
     373             : /**
     374             :  * Prune Edge if constraints are not met by testing Edge Attributes against
     375             :  * given constraints and cumulative cost of the given constrained path.
     376             :  *
     377             :  * @param path  On-going Computed Path with cumulative cost constraints
     378             :  * @param edge  Edge to be validate against Constraints
     379             :  * @param csts  Constraints for this path
     380             :  *
     381             :  * @return      True if Edge should be prune, false if Edge is valid
     382             :  */
     383           0 : static bool prune_edge(const struct c_path *path, const struct ls_edge *edge,
     384             :                        const struct constraints *csts)
     385             : {
     386           0 :         struct ls_vertex *dst;
     387           0 :         struct ls_attributes *attr;
     388             : 
     389             :         /* Check that Path, Edge and Constraints are valid */
     390           0 :         if (!path || !edge || !csts)
     391             :                 return true;
     392             : 
     393             :         /* Check that Edge has a valid destination */
     394           0 :         if (!edge->destination)
     395             :                 return true;
     396           0 :         dst = edge->destination;
     397             : 
     398             :         /* Check that Edge has valid attributes */
     399           0 :         if (!edge->attributes)
     400             :                 return true;
     401           0 :         attr = edge->attributes;
     402             : 
     403             :         /* Check that Edge belongs to the requested Address Family and type */
     404           0 :         if (csts->family == AF_INET) {
     405           0 :                 if (IPV4_NET0(attr->standard.local.s_addr))
     406             :                         return true;
     407           0 :                 if (csts->type == SR_TE)
     408           0 :                         if (!CHECK_FLAG(attr->flags, LS_ATTR_ADJ_SID) ||
     409           0 :                             !CHECK_FLAG(dst->node->flags, LS_NODE_SR))
     410             :                                 return true;
     411             :         }
     412           0 :         if (csts->family == AF_INET6) {
     413           0 :                 if (IN6_IS_ADDR_UNSPECIFIED(&attr->standard.local6))
     414             :                         return true;
     415           0 :                 if (csts->type == SR_TE)
     416           0 :                         if (!CHECK_FLAG(attr->flags, LS_ATTR_ADJ_SID6) ||
     417           0 :                             !CHECK_FLAG(dst->node->flags, LS_NODE_SR))
     418             :                                 return true;
     419             :         }
     420             : 
     421             :         /*
     422             :          * Check that total cost, up to this edge, respects the initial
     423             :          * constraints
     424             :          */
     425           0 :         switch (csts->ctype) {
     426           0 :         case CSPF_METRIC:
     427           0 :                 if (!CHECK_FLAG(attr->flags, LS_ATTR_METRIC))
     428             :                         return true;
     429           0 :                 if ((attr->metric + path->weight) > csts->cost)
     430             :                         return true;
     431             :                 break;
     432             : 
     433           0 :         case CSPF_TE_METRIC:
     434           0 :                 if (!CHECK_FLAG(attr->flags, LS_ATTR_TE_METRIC))
     435             :                         return true;
     436           0 :                 if ((attr->standard.te_metric + path->weight) > csts->cost)
     437             :                         return true;
     438             :                 break;
     439             : 
     440           0 :         case CSPF_DELAY:
     441           0 :                 if (!CHECK_FLAG(attr->flags, LS_ATTR_DELAY))
     442             :                         return true;
     443           0 :                 if ((attr->extended.delay + path->weight) > csts->cost)
     444             :                         return true;
     445             :                 break;
     446             :         }
     447             : 
     448             :         /* If specified, check that Edge meet Bandwidth constraint */
     449           0 :         if (csts->bw > 0.0) {
     450           0 :                 if (attr->standard.max_bw < csts->bw ||
     451           0 :                     attr->standard.max_rsv_bw < csts->bw ||
     452           0 :                     attr->standard.unrsv_bw[csts->cos] < csts->bw)
     453           0 :                         return true;
     454             :         }
     455             : 
     456             :         /* All is fine. We can consider this Edge valid, so not to be prune */
     457             :         return false;
     458             : }
     459             : 
     460             : /**
     461             :  * Relax constraints of the current path up to the destination vertex of the
     462             :  * provided Edge. This function progress in the network topology by validating
     463             :  * the next vertex on the computed path. If Vertex has not already been visited,
     464             :  * list of edges of the current path is augmented with this edge if the new cost
     465             :  * is lower than prior path up to this vertex. Current path is re-inserted in
     466             :  * the Priority Queue with its new cost i.e. current cost + edge cost.
     467             :  *
     468             :  * @param algo  CSPF structure
     469             :  * @param edge  Next Edge to be added to the current computed path
     470             :  *
     471             :  * @return      True if current path reach destination, false otherwise
     472             :  */
     473           0 : static bool relax_constraints(struct cspf *algo, struct ls_edge *edge)
     474             : {
     475             : 
     476           0 :         struct c_path pkey = {};
     477           0 :         struct c_path *next_path;
     478           0 :         struct v_node vnode = {};
     479           0 :         uint32_t total_cost = MAX_COST;
     480             : 
     481             :         /* Verify that we have a current computed path */
     482           0 :         if (!algo->path)
     483             :                 return false;
     484             : 
     485             :         /* Verify if we have not visited the next Vertex to avoid loop */
     486           0 :         vnode.key = edge->destination->key;
     487           0 :         if (visited_member(&algo->visited, &vnode)) {
     488             :                 return false;
     489             :         }
     490             : 
     491             :         /*
     492             :          * Get Next Computed Path from next vertex key
     493             :          * or create a new one if it has not yet computed.
     494             :          */
     495           0 :         pkey.dst = edge->destination->key;
     496           0 :         next_path = processed_find(&algo->processed, &pkey);
     497           0 :         if (!next_path) {
     498           0 :                 next_path = cpath_new(pkey.dst);
     499           0 :                 processed_add(&algo->processed, next_path);
     500             :         }
     501             : 
     502             :         /*
     503             :          * Add or update the Computed Path in the Priority Queue if total cost
     504             :          * is lower than cost associated to this next Vertex. This could occurs
     505             :          * if we process a Vertex that as not yet been visited in the Graph
     506             :          * or if we found a shortest path up to this Vertex.
     507             :          */
     508           0 :         switch (algo->csts.ctype) {
     509           0 :         case CSPF_METRIC:
     510           0 :                 total_cost = edge->attributes->metric + algo->path->weight;
     511           0 :                 break;
     512           0 :         case CSPF_TE_METRIC:
     513           0 :                 total_cost = edge->attributes->standard.te_metric +
     514           0 :                              algo->path->weight;
     515           0 :                 break;
     516           0 :         case CSPF_DELAY:
     517           0 :                 total_cost =
     518           0 :                         edge->attributes->extended.delay + algo->path->weight;
     519           0 :                 break;
     520             :         default:
     521             :                 break;
     522             :         }
     523           0 :         if (total_cost < next_path->weight) {
     524             :                 /*
     525             :                  * It is not possible to directly update the q_path in the
     526             :                  * Priority Queue. Indeed, if we modify the path weight, the
     527             :                  * Priority Queue must be re-ordered. So, we need fist to remove
     528             :                  * the q_path if it is present in the Priority Queue, then,
     529             :                  * update the Path, in particular the Weight, and finally
     530             :                  * (re-)insert it in the Priority Queue.
     531             :                  */
     532           0 :                 struct c_path *path;
     533           0 :                 frr_each_safe (pqueue, &algo->pqueue, path) {
     534           0 :                         if (path->dst == pkey.dst) {
     535           0 :                                 pqueue_del(&algo->pqueue, path);
     536           0 :                                 break;
     537             :                         }
     538             :                 }
     539           0 :                 next_path->weight = total_cost;
     540           0 :                 cpath_replace(next_path, algo->path);
     541           0 :                 listnode_add(next_path->edges, edge);
     542           0 :                 pqueue_add(&algo->pqueue, next_path);
     543             :         }
     544             : 
     545             :         /* Return True if we reach the destination */
     546           0 :         return (next_path->dst == algo->pdst->dst);
     547             : }
     548             : 
     549           0 : struct c_path *compute_p2p_path(struct cspf *algo, struct ls_ted *ted)
     550             : {
     551           0 :         struct listnode *node;
     552           0 :         struct ls_vertex *vertex;
     553           0 :         struct ls_edge *edge;
     554           0 :         struct c_path *optim_path;
     555           0 :         struct v_node *vnode;
     556           0 :         uint32_t cur_cost;
     557             : 
     558           0 :         optim_path = cpath_new(0xFFFFFFFFFFFFFFFF);
     559           0 :         optim_path->status = FAILED;
     560             : 
     561             :         /* Check that all is correctly initialized */
     562           0 :         if (!algo)
     563             :                 return optim_path;
     564             : 
     565           0 :         if (!algo->csts.ctype)
     566             :                 return optim_path;
     567             : 
     568           0 :         if (!algo->pdst) {
     569           0 :                 optim_path->status = NO_DESTINATION;
     570           0 :                 return optim_path;
     571             :         }
     572             : 
     573           0 :         if (!algo->path) {
     574           0 :                 optim_path->status = NO_SOURCE;
     575           0 :                 return optim_path;
     576             :         }
     577             : 
     578           0 :         if (algo->pdst->dst == algo->path->dst) {
     579           0 :                 optim_path->status = SAME_SRC_DST;
     580           0 :                 return optim_path;
     581             :         }
     582             : 
     583           0 :         optim_path->dst = algo->pdst->dst;
     584           0 :         optim_path->status = IN_PROGRESS;
     585             : 
     586             :         /*
     587             :          * Process all Connected Vertex until priority queue becomes empty.
     588             :          * Connected Vertices are added into the priority queue when
     589             :          * processing the next Connected Vertex: see relax_constraints()
     590             :          */
     591           0 :         cur_cost = MAX_COST;
     592           0 :         while (pqueue_count(&algo->pqueue) != 0) {
     593             :                 /* Got shortest current Path from the Priority Queue */
     594           0 :                 algo->path = pqueue_pop(&algo->pqueue);
     595             : 
     596             :                 /* Add destination Vertex of this path to the visited RB Tree */
     597           0 :                 vertex = ls_find_vertex_by_key(ted, algo->path->dst);
     598           0 :                 if (!vertex)
     599           0 :                         continue;
     600           0 :                 vnode = vnode_new(vertex);
     601           0 :                 visited_add(&algo->visited, vnode);
     602             : 
     603             :                 /* Process all outgoing links from this Vertex */
     604           0 :                 for (ALL_LIST_ELEMENTS_RO(vertex->outgoing_edges, node, edge)) {
     605             :                         /*
     606             :                          * Skip Connected Edges that must be prune i.e.
     607             :                          * Edges that not satisfy the given constraints,
     608             :                          * in particular the Bandwidth, TE Metric and Delay.
     609             :                          */
     610           0 :                         if (prune_edge(algo->path, edge, &algo->csts))
     611           0 :                                 continue;
     612             : 
     613             :                         /*
     614             :                          * Relax constraints and check if we got a shorter
     615             :                          * candidate path
     616             :                          */
     617           0 :                         if (relax_constraints(algo, edge) &&
     618           0 :                             algo->pdst->weight < cur_cost) {
     619           0 :                                 cur_cost = algo->pdst->weight;
     620           0 :                                 cpath_copy(optim_path, algo->pdst);
     621           0 :                                 optim_path->status = SUCCESS;
     622             :                         }
     623             :                 }
     624             :         }
     625             : 
     626             :         /*
     627             :          * The priority queue is empty => all the possible (vertex, path)
     628             :          * elements have been explored. The optim_path contains the optimal
     629             :          * path if it exists. Otherwise an empty path with status failed is
     630             :          * returned.
     631             :          */
     632           0 :         if (optim_path->status == IN_PROGRESS ||
     633           0 :             listcount(optim_path->edges) == 0)
     634           0 :                 optim_path->status = FAILED;
     635           0 :         cspf_clean(algo);
     636             : 
     637           0 :         return optim_path;
     638             : }

Generated by: LCOV version v1.16-topotato